Circular
Functions
Circular
functions:
- NB. Pi radians = 180
degrees.
- tanx=sinx/cosx, cosx not=
0;
- cotx=cosx/sinx;
- secx=1/cosx;
- cosecx=1/sinx;
- 1+(tan2)x = (sec2)x,
cosx not= 0;
- 1+(cot2)x = (cosec2)x,
sinx not= 0;
- (cos2)x + (sin2)x = 1;
- Where x is in degrees:
- sin(90-x) = cosx;
cos(90-x) = sinx;
- tan(90-x) = cotx;
cot(90-x) = tanx;
- sin(180-x)= sinx; cos(180-x)=-cosx;
- tan(180-x)=-tanx; cot(180-x)=-cotx;
- sin(180+x)=-sinx; cos(180+x)=-cosx;
- tan(180+x)= tanx;
cot(180+x)= cotx;
- sin(360-x)=-sinx;
cos(360-x)= cosx;
- tan(360-x)=-tanx; cot(360-x)=-cotx;
- sin(-x) =-sinx; cos(-x) = cosx;
- tan(-x) =-tanx;
cot(-x) =-cotx;
- sin(x+y) =
sinxcosy + cosxsiny;
- sin(x-y) =
sinxcosy - cosxsiny;
- cos(x+y) =
cosxcosy - sinxsiny;
- cos(x-y) =
cosxcosy + sinxsiny;
- tan(x+y) = (tanx +
tany)/(1 - tanxtany);
- tan(x-y) = (tanx -
tany)/(1 + tanxtany);
- sin2x = 2sinxcosx
= 2tanx/(1 + (tan^2)x);
- cos2x = (cos2)x - (sin2)x =
2(cos2)x - 1;
- = 1-2(sin2)x =
(1-(tan2)x)/(1+(tan2)x);
- tan2x = 2tanx/(1 - (tan2)x);
- 2sinxcosx =
sin(x+y) + sin(x-y);
- 2cosxcosy =
cos(x+y) + cos(x-y);
- 2sinxsiny =
cos(x-y) - cos(x+y);
- sinx + siny =
2sin((x+y)/2)cos((x-y)/2);
- sinx - siny =
2cos((x+y)/2)sin((x-y)/2);
- cosx + cosy =
2cos((x+y)/2)cos((x-y)/2);
- cosx - cosy
=-2sin((x+y)/2)sin((x-y)/2);
Inverse Circular Functions:
- NB. Must restrict circular
function to make 1-to-1:
- ie. sinx, xE[-90,90]; cosx, xE[0,180]; tanx,
-90<x<90;
- General Solutions:
- sinx = a, => x
= 180n + ((-1)n)Arsina;
- cosx = a, => x
= 360n +/- Arcosa;
- tanx = a, => x
= 180n + Artana;