maths:circular
Table of Contents
a brief summary of circular functions and trigonometry
see also:
Introduction
Circular functions:
- NB. π radians = 180 degrees.
- unit circle defined by x2+y2 = 1 and each point of the circle represented by (cost,sint) where t = angle in radians polar coordinates which is also twice the area of the sector subtended by that angle
- ie. cos(t)2+sin(t)2 = 1
- tanx=sinx/cosx, cosx not= 0;
- cotx=cosx/sinx;
- secx=1/cosx;
- cosecx=1/sinx;
- 1+(tan2)x = (sec2)x, cosx not= 0;
- 1+(cot2)x = (cosec2)x, sinx not= 0;
- (cos2)x + (sin2)x = 1;
- Where x is in degrees:
- sin(90-x) = cosx; cos(90-x) = sinx;
- tan(90-x) = cotx; cot(90-x) = tanx;
- sin(180-x)= sinx; cos(180-x)=-cosx;
- tan(180-x)=-tanx; cot(180-x)=-cotx;
- sin(180+x)=-sinx; cos(180+x)=-cosx;
- tan(180+x)= tanx; cot(180+x)= cotx;
- sin(360-x)=-sinx; cos(360-x)= cosx;
- tan(360-x)=-tanx; cot(360-x)=-cotx;
- sin(-x) =-sinx; cos(-x) = cosx;
- tan(-x) =-tanx; cot(-x) =-cotx;
- sin(x+y) = sinxcosy + cosxsiny;
- sin(x-y) = sinxcosy - cosxsiny;
- cos(x+y) = cosxcosy - sinxsiny;
- cos(x-y) = cosxcosy + sinxsiny;
- tan(x+y) = (tanx + tany)/(1 - tanxtany);
- tan(x-y) = (tanx - tany)/(1 + tanxtany);
- sin2x = 2sinxcosx = 2tanx/(1 + (tan^2)x);
- cos2x = (cos2)x - (sin2)x = 2(cos2)x - 1;
- = 1-2(sin2)x = (1-(tan2)x)/(1+(tan2)x);
- tan2x = 2tanx/(1 - (tan2)x);
- 2sinxcosx = sin(x+y) + sin(x-y);
- 2cosxcosy = cos(x+y) + cos(x-y);
- 2sinxsiny = cos(x-y) - cos(x+y);
- sinx + siny = 2sin((x+y)/2)cos((x-y)/2);
- sinx - siny = 2cos((x+y)/2)sin((x-y)/2);
- cosx + cosy = 2cos((x+y)/2)cos((x-y)/2);
- cosx - cosy =-2sin((x+y)/2)sin((x-y)/2);
Inverse Circular Functions:
- NB. Must restrict circular function to make 1-to-1:
- ie. sinx, xE[-90,90]; cosx, xE[0,180]; tanx, -90<x<90;
- General Solutions:
- sinx = a, ⇒ x = 180n + ((-1)n)Arsina;
- cosx = a, ⇒ x = 360n +/- Arcosa;
- tanx = a, ⇒ x = 180n + Artana;
Hyperbolic functions
- a point (x,y) on the hyperbolic curve x2-y2 = 1 can be given by (cosh(t),sinh(t)) where
- t = twice the area subtended by the angle from the origin, the x axis, and the curve (analogous to circular functions)
- cosh(t)2-sinh(t)2 = 1
- cosh(t) = (et+e-t)/2
- sinh(t) = (et-e-t)/2
- a catenary curve as on suspension bridges: y := coshx
maths/circular.txt · Last modified: 2021/09/25 15:58 by gary1